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The effect of filtration flow on the shape of a body formed by freezing around an 
isolated freezing column is investigated on thebasis of the mathematical model 
proposed in [I]. 

We examine the problem of the limiting equilibrium shape of an ice--rock body formed 
around a freezing column. We use the formulation given in [i]. We assume that the filtration 
satisfies Darcy's law, the liquid is incompressible, and the thermophysical characteristics 
of the filtering medium are constant. 

The mathematical model describing this process can be represented in the following di- 
mensionless form: 

div V = 0, V = - -  VP, z E D; IVl -- 1, Izl ~ oo, ( 1 )  

PeVv0 = h0, zED; 0 =  1, Izl--,-oo: O= O, zEODl, (2)  

A0~=0,  zED~; 0 0  _ 0 0 x  0 ~ = 0 ,  zEOD~, 
On ' On ( 3 ) 

lira r 001 ==Q, z = 0 ,  
r~0 at/, 

where the dimensionless characteristics and the independent variables are as follows: 

X Y 0= t--tP,81= X~ (6 - -  tp) 
x = - / - ,  V-- l ' ' t ~ - - t p  ~ ( t o o - - t ~  

 oVol q p - -  , P e = - - ,  V - - - - ,  Q =  
IV~o a~ Voo ~ (t~ -- tp) 

where s is the characteristic size of the body formed, and Pe is the Peclet number. 

Here D is the region of filtration; D I is the region occupied by the solid body formed; 
aD I is the boundary of the body; t and t I are the temperature in the regions D and DI, respec- 
tively; tp is the freezing temperature of the flow; t= and V~ are the temperature and veloc- 
ity at infinity; and, q is the intensity of the freezing column. 

We shall estimate the order of magnitude of the unknown maximum size of the body s un- 
der the assumption that Pe § ~. One can hope that the estimate obtained in this limiting case 
is an upper limit on the characteristic size of the body in the entire range of Pe numbers. 
From ~ boundary-layer theory it is known that the heat flux from the side of the thawed zone 
is of the order of O((t~ - tp)lT~Pe/s The heat flux from the side of the frozen zone is 
O(q/s The condition that both quantities be of the same order of magnitude leads to the 
express ion 

z ,  ( t~ - -  tp) K#~ (4) 
In [11 the problem (1)-(3) is reduced to the following system of integral equations by 

methods of the theory of boundary-value problems for analytical functions: 
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(6 )  
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(8 )  

(9 )  

( lO)  

where 

= e x p  (ia), ~1 (~) = exp (i~ (a)), 

(a) = 4aa ]. G ('~) sin zd'~, 
-go 

0 ('0 = ~ (cos "~), a ~< "~ % 2a, 

(11) 

where N q(~) is the inverse function to ~(~); QI, 0Ql are a circle of unit radius and its cir- 
cumference, respectively; 4a is the length of the plate in the plane of the complex potential. 

The number P is the physical parameter on which the solution of the system of equations 
(5)-(10) depends. It actually characterizes the effect of the filtration flow on the heat 
emission of the body and is an integral characteristic of heat transfer; this is evident from 
Eqs. (5) and (6). The shape of the body, determined from Eqs. (7)-(i0), depends functionally 
on the heat-flux distribution on the plate (ii). Thus analysis of the effect of filtration 
flow on the limiting equilibrium shape of the body reduces to studying the dependence of the 
distribution of the heat flux to the plate on the number P. 

The analytical solution of Eq. (5), obtained in [2, 3] in the form of series in Mathieu 
and Airy functions, is inconvenient for further numerical calculations, so that this equation 
was solved numerically. For this, on the basis of the well-known theorems of [4] the solution 
of this equation was represented in the form 

(~) = exp (P~)~, (~) 
V1 -- ~2 

and then the equation was solved for B,(~) by the method of collocations. 

For known B(~) the determination of the shape of the body reduces to solving a system 
of linear equations. For this the function F(o) can be represented, by virtue of its analytic 
properties [5], in the form 

2 ~ ahcos k~-~- ibh sin km 
k--1  

The expansion of Eq. (7) in a Fourier series leads to a system of linear equations for the 
Fourier coefficients of the function F(o). 

The number of nodes in the method of collocations and the number of coefficients in the 
Fourier series was determined in the course of the computational experiment. 
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Fig. i. Distribution of the heat-flux density: 
i) P = 0.01; 2) 0.5; 3) i; 4) I0. 
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Shape of the ice-rock body: i) P = 0.01; 

2) 0 . 5 ;  3)  i ;  4) 10. 

The results of the numerical calculations are presented in Figs. i and 2. 

Figure 1 shows the distribution of heat fluxes to the plate, corresponding to an ice- 
rock body in the plane of the complex potential of the flow. For P ! 0.01 the heat-flux dens- 
ity is distributed practically symmetrically and its value is the same as that calculated using 
the asymptotic formula [2, 6]. For this reason, the ice-rock body has a nearly circular 
shape (Fig. 2). Indeed, in this case the formula (Ii) assumes the form 

whence it is obvious that for small values of P the solution of the integral equation (7) 
is identically equal to i. 

Finally we obtain 

dr+  
z = ( 

�9 ! X+ o 

- -  = a e x p  (ia), a ~ iO, 2~1. 

Thus, for P ! 0.01 the ice-rock body has a circular shape with radius a. 

As one can see from Fig. i, the heat-flux distribution becomes asymmetric as P increas- 
es, i.e., convective removal comes into play. As a result the ice-rock body assumes an ovoid 
shape. 

In the region P ~ i0 the heat-flux density, calculated from the asyptotic formulas [7], 
is identical everywhere, with the exception of the vicinity of the back edge, to the heat- 
flux density obtained numerically. For this reason, the shape of the ice-rock body determined 
by the numerical method (solid lines) is different from the approximate solution obtained 
by Maksimov [8] (dashed line) only near the back edge (Fig. 2). 

Thus for P < 0.01 the shape of the ice-rock body can be modeled by a circle of radius 
a. For P > i0 th~ shape of the bodyis described well by the equation obtained in [8] for large 
Pe numbers? For all other values of the parameter P the shape of the ice-rock body can be 
determined numerically using the algorithm described above. 
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Fig. 3. Maximum dimensions x, (i) and y, (2) of the ice-rock body versus the Peclet 
number Pc. 

Fig. 4. Transverse size of the ice-rock body versus the freezing temperature: 
i) V~ = 0.5 m/day; 2) i; 3) 2; e, cm; tc, ~ 

In practice, graphs of the maximum dimensions of the ice-rock body x, and y, versus the 
Peclet number Pe, which are presented in Fig. 3, can be used to estimate efficiently the re- 
quired intensity of the freezing column. 

We shall compare the solutions obtained with the experimental data of Prozorov [91, 
i.e., we shall study the case when the limiting ice-rock body was formed around a freezing col- 
umn of radius r, on which a negative temperature t c is maintained. We assume that r/s << 
i. Since tp = O~ , the dimensionless temperature on the surface of the freezing column F 
can be represented as 

%Mte 
Oi-- k~t~" 

On the other hand, the dimensionless temperature on F is equal to the real part of the 
complex thermal potential 

01 .... Q ln p, 
2~ 

where p is the radius of the circle into which the contour of the colva~n is transformed by 
a conformal mapping of the unknown region D 1 on a circle of unit radius. Using the proper- 
ties of conformal mappings we obtain, to within 0(r2/s 

Therefore, 

9 -- 
r at+l 
t dz]o o" 

s Q In P. (12)  
kTl~ 2~ 

Substituting the equality Pe = Q2, which follows from the formula (4), into Eq. (12), 
we obtain a formula for the freezing temperature 

t e "]'/P-e k~ t= |n 9. (13)  
2~ s 

Figure 4 shows plots of the transverse size ~ of an ice-rock body as a function of the 
freezing temperature tc, calculated from Eq. (13), for different filtration rates V~ = 0.5, 
i, and 2 m/day (solid lines). The dashed curves were obtained experimentally [9]. The thermo- 
physical parameters ~n the calculation using Eq. (13) were taken from [9]. 

As one can see, the theoretical results agree satisfactorily with the experimental re- 
suits. Here it should alsobe kept in mind that in [9] the experimental curves were obtained 
over a finite freezing time, while the theoretical limiting equilibrium state appears over 
an infinitely long time. For this reason, the theoretically computed temperature of the freez- 
ing column is always higher than the experimental temperature. 
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NOTATION 

a, thermal diffusivity; ~, thermal conductivity; k, filtration coefficient; s charac- 
teristic size in the frozen zone; V, velocity; p, pressure; t, temperature; r, radius of the 
freezing column; F, surface of the freezing column; n, outer normal to 8DI; X and Y, Cartesian 
coordinates; e, maximum transverse size of the ice--rock body. The dimensionless parameters, 
variables, and functions are: x, y, Cartesian coordinates; z = x + iy, complex variable of 
the physical plane; Kc, ratio of the volume heat capacities of water and soil; Pc, Peclet 
number; ~($), heat-flux density; e and el, temperatures in the regions D and Dz, respectively; 
Q, intensity of the freezing column; K0(~) , Bessel function. The indices are: T, thawed zone; 
M, frozen zone; c, surface of the freezing column; p, surface of the phase transition; =, 
value at infinity; *, maximum size of the ice--rock body; and, A designates dimensional vari- 
ables. 
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STUDY OF THE CHARACTERISTICS OF HEAT AND MASS TRANSFER 
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An experimental apparatus - a universal vacuum spectrophotometer - is described. 
It is used for studying the kinetic characteristics of gas-solid phase transitions 
at low temperatures as well as the spectral reflectances of typical optical surfaces 
coated with layers of cryocondensates of different gases. A method is proposed for 
determining the indices of refraction of the cryocondensates, the growth rates of the 
condensates, andthe spectral reflectances. 

Heat and mass transfer in cryogenic-vacuum systems in the presence of gas-solid phase 
transitions, while obeying general laws, nonetheless exhibits a number of important peculiari- 
ties which require special study. We are referring primarily to the presence of heat and mass 
fluxes which are determined by the transformation of gas into a solid phase and which can be 
determined in the systems studied. In addition, under certain conditions, namely, high vacu- 
um and low temperatures, the radiation component makes an important contribution to the over- 
all heat transfer. However, the appearance of layers of cryogenically deposited gases on the 
heat-transfer surfaces can significantly affect the reflectances of thesurfaces and the pa- 
rameters of the radiation heat transfer as a whole. Since there are no thoroughly developed 
methods for calculating heat and mass fluxes under these conditions, it is necessary to per- 
form:experimental investigations in this direction. It should be noted that interest in such 
investigations has increased substantially in the last 20 years. They are, however, of a 
fragmentary and particularly applied character. Here, first, we call attention to [1-3], 
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